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Abstract

The subject of this paper is the creation of knowl-
edge bases by enumerating and organizing all web
occurrences of certain subgraphs. We focus on
subgraphs that are signatures of web phenomena
such as tightly-focused topic communities, we-
brings, taxonomy trees, keiretsus, etc. For in-

alliances—patent as well as latent—as evident in the link
structure of the web. More generally, we consider the cre-
ation of knowledge bases from an analysis of the web graph
using the following paradigm: (1) identifysignaturesub-
graph that is likely to arise in every element to be repre-
sented in the knowledge base; (2) devise a method for enu-
merating every instance of this subgraph in the web graph;
(3) reconstruct, from each enumerated subgraph, the asso-
ciated element of the knowledge base; and (4) annotate and
index the elements to make the knowledge base usable. In

stance, the signature of a webring is a central
page with bidirectional links to a number of other
pages. We develop novel algorithms for such enu-
meration problems. A key technical contribution
is the development of a model for the evolution
of the web graph, based on experimental obser-
vations derived from a snapshot of the web. We
argue that our algorithms run efficiently in this
model, and use the model to explain some sta-
tistical phenomena on the web that emerged dur-
ing our experiments. Finally, we describe the de-
sign and implementation of Campfire, a knowl-
edge base of over one hundred thousand web com-
munities.

the example above, step (1) could consist of identifying a
clique of size four as likely to be present in every keiretsu
(say); step (2) would require an efficient method for enu-
merating cliques of size 4; step (3) would require assem-
bling all pages in a keiretsu given the portion represented
by the 4-clique; and step (4) could consist of extracting and
indexing statistically significant keywords from the assem
bled pages.

While the first of these steps is specific to the ele-
ments that will populate the knowledge base, the other
three share some common challenges that will be our fo-
cus here. Foremost among these challenges: enumerating
subgraphs on large graphsis, in the worst case, infeasible—
from a complexity-theoretic as well as practical standpoin
. Clearly, we must exploit the fact that the web is not a
1 Overview “worst-case” graph. To this end, we develop a stochastic
The subject of this paper is the creation of knowledgemodel of the web graph that exhibits good agreement with
bases by enumerating and organizing all web occurrencesiatistics from the web, and show that a traditional random
of chosen subgraphs. For example, consider enumera’[ir@’aph model could not exhibit such agreement. We develop
all cliquesof size four or more, where a clique is a set an algorithmic paradigm for subgraph enumeration prob-
of web pages each of which links to all the others. Eachlems, run a concrete instance on the web, and show that
such clique could represent an alliance between the créts good performance is predicted by our web graph model.
ators of these pages: business partriesisetsus members We describe the ongoing Campfire project, in which we
of a family, etc. If we could enumerate all cliques on the enumerate, annotate, and index over 100,000 web commu-

web, then organize and annotate them into a usable strugities generated using our methods.

ture, we would have created a knowledge base of all Sucr_'ocallydense regions and communities. We begin with
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Example 1 Consider the set of web pages that point to
bothwww. boei ng. comandwww. ai r bus. com There

are more than two thousand such pages on today’s web, in-
cluding personal pages, aircraft museums, vendors, legal
services, and so forth. Almost all of these pages represent
some type of resource list of airplane manufacturers. The
subgraph induced by these thousand pages, and the pages
they point to, has a specific form: a number of resource lists
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all point to some subset of a set of resources, in this caséhe graph must effectively reside in main memory to avoid
Boeing, Airbus, and dozens of other aircraft manufactur-the overhead of seeking a disk on every edge access.
ers. Moreover, pages within the subgraph frequently—but Although these obstacles appear insurmountable, we ex-
not always—cross-reference each otl{&ee Figure J. ploit additional structure latent in the web graph. For in-
stance, the average number of links out of a page is small.

A knowledge base containing all structures such asHowever, the web is not eandomsparse graph—it is a
the one in Figure 1—aircraft manufacturers, long distancesparse graph containing many structurelg(esfor in-
phone companies, US national parks, etc.—would clearlystance) that arise only in far denser random graphs. The
be of tremendous value. This motivates the definition ofreason the web contains these structures is that, despite it
structures we cabipartite cores:a bipartite core in agraph overall sparsenesfcal regions of the web are dense/e
consists of two (not necessarily disjoint) sets of nodes propose novel algorithms that exploit this structure of the
andR, such that every node ih links to every node inR.  web graph to overcome these challenges.
Note that links fromZ to L, or within R or L, may or may To understand the performance of our algorithms, we
not be present. develop a stochastic model for “web-like” graphs. The
model exhibits two desirable properties: (1) it agrees with
a number of statistical observations about the web graph,
and (2) it is a useful tool in algorithm design, suggesting
both explanations for the performance of our algorithms,
and future directions for other efficient web analyses.

Here is a preview of a key technical element of our
stochastic web graph model: intuitivehgw pages are cre-
ated by borrowing random fragments of existing pages.

Guided tour of this paper. In Section 2 we detail a
number of measurements we have made of a snapshot of
the web graph; these include the distribution of in- and out-
degrees of nodes, and the numbers of bipartite cores. In
Section 3 we motivate and develop our stochastic model for
Figure 1: A bipartite core. the web graph. We give analyses showing that our model—
Indeed, one may envision building knowledge besides being a plausible high-level process for the cre-
tion of the web graph—explains our measurements from

bases from enumerations of many different interestingg ' - c
structures—bipartite cores, cliquesebrings(which man- ection 2 in ways that traditional random graph models

ifest themselves as star-shaped graphs with bidirectiongould not. Section 4 describes our three main algorithms:
links on the spokes), pages in a hierarchically organized® elimination/generation paradigm for subgraph enumer-
website, or newsgroups and newsgroup discussion threadion, an extension of a link-based web search algorithm
(which manifest themselves as bidirectional paths). Thdor extending bipartite cores into communities, and an in-
reasons for doing so include: (1) Such knowledge based€X extraction algor_|thm. In Sectl_on 5 we give some_r_esults
represent a better starting point for deeper analyses arfef the Campfire project on organizing web communities.
mining than raw web data. Indeed, this is the goal of
the Campfire project. (2) Structure can be used morél.1 Related previous work
effectively for searching and navigation. For instance,
an agent responsible for searching a database containingnk analysis. A number of web search projects
dense bipartite graphs could pay more attention to texhave used links to enhance the quality and reliability of
surrounding the relevant links, for their annotative value the search results; see for instance HITS [19], its vari-
(3) Fine-grained structures provide a basis for targetednts [5, 9, 10], and Google [6]. The connectivity server [4]
market segmentation. (4) Studying these enumerateg|so provides a fast index to linkage information on the
structures over time gives us insight into the sociologicalweb. Dean and Henzinger [12] combine heuristic improve-
evolution of the web. ments from [5] and [10] and apply these to the problem of
finding related pages on the web.

Challenges and approaches. From an algorithmic per-

spective, the naive “search” algorithm for enumeration suf Sociometrics. Statistical analysis of the structure of
fers from two fatal problems. First, the size of the searchthe academic citation graph has been the subject of much
space is far too large—using the naive algorithmto enumerwork in the Sociometrics community. As we discuss be-
ate all bipartite cores with two web pages pointing to threelow, Zipf distributions seem to characterize web citation
pages would require examining approximatély’ possi-  frequency. Interestingly, the same distributions have als
bilities on a graph such as the web with? nodes. Second, been observed for citations in the academic literatures Thi
and more practically, the algorithm requires random accesfact, known ad otka’s law; was demonstrated by Lotka in

to edges in the graph, which implies that a large fraction 0f1926 [23]. Gilbert [16] presents a probabilistic model ex-
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plaining Lotka’s law, which is similar in spirit to our pro- 10408 __ Indegree distibution
posal, though different in details and application. Indegree distrbution o

1e+07 |

Data mining.  Traditional data mining research (see for .

instance Agrawal and Srikant [1]) focuses largely on alt e | s
gorithms for finding association rules and related statist
cal correlation measures in a given dataset. However, ef
ficient methods such & priori [1] or even more general
methodologies such as query flocks [29], do not scale {o
the numbers of “items” (pages) in the web dataset. Thi
number is currently around four hundred million, which
is two to three orders of magnitude more than the num
ber of items in a typical market basket analysis. Furthey,
the graph-theoretic structures we seek could correspond|to
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association rules with very small support and confidence. ! 1 Indegree 10 1000

Our conviction that these structures are interesting comes

from additional insight about the web graph, rather than Figure 2: In-degree distribution.

from traditional support and confidence measures. we consider only the interconnection patterns of hyper-

In the case of bipatrtite cores, the relation we are interdinks, and abstract away the textual content of each page.
ested in is co-citation. Co-citation is effectively therjoi We view each page as a node of a directed graph, and each
of the web citation relation with its transpose, the webhyperlink as a directed edge. These measurements provide
“cited by” relation. The size of this relation is potentiall ~crucial insights for our web graph model (Section 3) as well
much larger than the original citation relation. Thus, weas in our efficient enumeration algorithms (Section 4).

_need meth_ods that Wo_rk With the _original, without explic- In-degree. We say that a hyperlink is aaut-link of
itly computing the co-citation relation. _ _ its source page, and an-link of its destination page. We

The work of Mendelzon and Wood [25] is an instance ca|| the number of out-links and in-links of a page the-
of structural methods in mining. They argue that the tra-gegreeand in-degreeof the page, respectively. We begin
ditional SQL query interface to databases is inadequate iBy counting the in-degree of each page. Since the aver-
its power to specify several structural queries that gre_rint age out-degree is around eight, and since each edge con-
esting in the context of the web. We note that this is notyjphytes equally to the total in- and out-degree, the awerag
the case here. The signature graphs we are interested in gffdegree must also be around eight. Our interest is in un-
relatively easy to specify in SQL. derstanding not just the average, but the complete distri-
bution of in-degrees. Figure 2 shows a log-log plot of the

Enumerating bipartite cores. _In recent work [20] we number of pages that have in-degrieas a function ofi.
reported enumerating over 200,000 bipartite cores from Fhe linearity of the curve indicates that the distributien i

shapshot of the web. The contributions reported in that pa- . " ; )
] . o . “an inverse polynomial. Fitting an inverse polynomial to the
per were: (1) a special case of the algorithmic paradigm

introduced here; (2) preliminary statistical observasion data we find the probability that a page fids-links to be

) : roughly proportional ta—2-1. We will also refer to inverse
about the web that we extend and explain here, using thgolynomial distributions aZipfian distributiong30].

web graph model developed in this paper; and (3) A ran- . o e L .
dom gsargpling experimenri showing 51;; barely E(>°/2J of the An important gharacterls'_u_c of leflan_dlstr_lbufu_ons is
cores arose coincidentally. The large scale and high (y(ualitthat they have high probability of deviating significantly

: ; . from the mean. Thus, although the mean in-degree of a
of such enumerated structures provides a compelling basis_ . bout 8. there i anifi bability th
for building knowledge bases out of them. A number of pal?ﬁ IS al(())léto ¢ l_erke |sfa signi |c¢';1nt probability t latf\O%?(ge
these results, including Kleinberg’s HITS algorithm [19], Wit have in-links (for example, approximately

are discussed in the survey paper [21]. pages on the web have 1000 in-links).

Henzingeret. al.[17] study algorithmic and memory Out-degree. Our next observation concerns the roughly
bottleneck issues in related graph computations from a theZipfian distribution of out-degrees in the web graph. Fig-
oretical perspective, primarily to derive impossibilitg-r ~ ure 3 shows a log-log distribution éfversus the number
sults. For a survey of database techniques on the web arff pages that have out-degrée This curve also follows

the relationships between them, see Florescu, Levy, and@ Zipfian distribution. Fitting an inverse polynomial to the
Mendelzon [13]. data, we note that a random web page has out-degvisl

probability approximately—2-38.

2 Measurements of the web graph Ci,; counts. o . .
grap In Section 1 we described bipartite cores, which consist

In this section we describe a set of measurements generatedl two sets of pageé and R, such that every page ih
from a crawl of the web from 1997, provided by Alexa, Inc. links to every page inR. If L containsi pages, andr
As our primary focus is the linkage patterns between pages;ontains;j pages, we refer to the core a€’a;.
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Figure 3: Out-Degree distribution. Figure 5: Number ot’; ;s as a function ofj.
3 Models for web-like graphs

Number of cores as function of fans
100000 T T

In this section we present our model for web-like graphs,
motivated by the following goals:

3 centers
4 centers
o 5 centers
+ 6 centers
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1. Understand various structural properties of the web
graph—in- and out-degrees, neighborhood structures,
etc. Of particular interest to us is the distribution of

. web structures that are signatures of the components

s o of a knowledge base (e.g., the bipartite cores we are

interested in).

o

o

10000 x °

+

Number of cores

1000
. 2. Perform a more realistic analysis of algorithms on
the web graph—this is of particular interest because
worst case analysis of many algorithms is particularly
pessimistic and unrealistic when applied to the web
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Figure 4: Number of’; ;'s as a function of. 3. Predict properties of the web graph based on the
’ model—this is of interest because it can lead to bet-
During the exhaustive enumeration [20] of bipartite ter algorithmic and structural insight.

cores, we created a subgraph of the web consisting of all _

pages remaining after the algorithm prunes away all node¥Ve seek to model the linkage structure of the web graph.
of degree less than four. We enumerateddl}’s in the In partlcula_r, our mode_ls do n_otdescnbe textual_ content
resulting graph, forall € {2,..., 7} andj € {3,...,20}. We begin with a discussion of the properties such a
We now analyze the trends in that dataset. We begin bynodel should have, and then present a general framework
looking at the dependence of the numbercaf,’s oni.  for a class of graph models calledpying models Next,
Figure 4 shows a number of curves representing fixed valWe give a simple concrete instance of a copying model, and
ues ofj and four values of—we display only counts for analyz_e the concrete model to predict the parameters mea-
i > 4 since the pruning removed nodes of degree less thafured in Section 2. We show that measurements and pre-
4. To avoid clutter, we show values ¢franging from3 to ~ dicted behavior exhibit strong agreement.

6, and20—intermediate values have the same form. As the _

figure shows, the number 6f; ;'s drops exponentiallyas a 3-1 Desiderata for a web graph model.

function ofi, in this range. 1. Simplicity. It should have a succinct and fairly natural
Next, Figure 5 shows the curves representing fixed val-  description.

ues ofi for various values of. The graph shows a log-log . ) _

plot with linear behavior. Fitting an inverse polynomialto - Plausibility: It should be rooted in a plausible macro-

the data, the number af; .'s as a function ofj drops as level process for the creation of content on the web.
. ’ iy ' We cannot hope to model the detailed behavior of the

j7~¢, where the value of is between..09 and1.4. X
many users creating web content. Instead, we only de-
sire that the aggregate formation of web structure be
captured well by our graph model. Thus, while the
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model is described as a stochastic process for the creextend traditional random graph models to capture evolu-
ation of individual pages, we are really only concernedtion, but this has not been addressed primarily because in
with the aggregate consequence of these individual acstandard models it is unlikely that interesting mathenadtic
tions. Therefore we seek a model that is plausible aphenomena arise from evolution.

this aggregate level.

3. Topics and communitieslt should provide struc- 3.2 Intuition for our models

ture corresponding to the strongly-linked “topics” that Items 1 and 2 of the desiderata listed above ask that our
have emerged on the actual wélnit it should notdo  model encapsulate a simple, plausible notion of content
so by requiring some priori static set of topics that creation on the web. Our notion is based on the following
are part of the model description—the evolution of in- intuition:

teresting topics and communities should instead be an

emergent feature of the model.Such a model has e some page creators on today’s web may create content
several advantages: and link to other sites without regard to the topics that

. . . ) are already represented on the web, but
o Viability: It is extremely difficult to characterize

the set of topics on the web; thus itwould be use- o manypage creators will be drawn to existing topics of
ful to draw statistical conclusions without such a interest to them, and will link to pages within some of
characterization. these existing topics.

e Dynamism The set of topics reflected in web ] ] )
content has proven to be fairly dynamic. Thus, Consider a user intent on creating a page about recre-
the shifting landscape of actual topics will need ational sailing. Like most content creators, this user woul
to be addressed in any topic-aware model ofProbably wish to incorporate some links that would be
time-dependent growth. of interest to potential visitors to the page. In order to
gather together such links, the user would probably be-
4. Statistics We would like the model to reflect many gin to browse around, perhaps using the many excellent
of the structural phenomena we have observed in theesource listéalready available about recreational sailing,
web graph. These include: and choosing links based on his or her particular prefer-

L L - L ences within the topic. In the end, the resulting page would
(2) %P?ﬁg 2'j:;g’g:'gPﬁﬁ‘ki'gf;ang:)Stgggg_oPn[i(i)i]r_ be another resource list about the topic, albeit one with a

ticular, the number of pages within-links is new personal spin.
well-approximated [20] by /2. A similar phe- We draw two lessons from this example: first, if a num-

nomenon has been observed in the study OTber of users have created links to a page, a new user will
scholarly citations [11, 23], and is the basis of be more likely to link to that page than to a random page

S : o - (partly because the page is probably of higher quality, and
Ezusd[lig]m the sociology of scientific communi- partly because the page is easier to find). And second, a

user who has added a link to a sailing page is more likely

(b) Locally dense globally sparse structuréAl-  to add another sailing link than an arbitrary link. Or said
though the web graph is relatively sparse (theanother way, if a user links to a page, and some existing
average number of links out of a page is roughly resource list also links to that page, the user may link to
7.2), the graph contains well over one hundredsomething else appearing on the resource list.

thousand bipartite cores with at least six nodes Rephrasing these observations in purely graph-theoretic
in them, even after mirrors are deleted. This iSterms:

because the web graph, though globally sparse,
has many locally dense regions. 1. A new page is more likely to link to pages with higher
in-degree.
5. Evolution: We should capture the phenomenon that J
the web graph has nodes and edges appearing and dis2. A new page is more likely to link to two pages that co-
appearing with time. occur on some resource list than to two random pages.

Interestingly and unfortunately, Items 3, 5, and all the  We therefore propose the following intuition for a sim-
criteria of Iltem 4, fail to hold for traditional models [7] ple process of link creation, which results in behavior cbey
of random graph theory. For instance, traditional randoming the previous observationg& new page adds links by
graph models would predict in- and out-degrees that areicking an existing page, and copying some links from that
Poisson distributed, rather than the significantly heavier page to itself.
tailed Zipfian distributions we have observed. It is easy to

2py Resource listsve mean pages that collect links on one or more

1In particular, we avoid models of the form “Assume each ned®ime  topics, ranging in scope from a carefully-researched nddéathoo to
combination of topics, and add an edge from one page to anaitte the small personal page of an individual who has collectedrs¢links
probability dependent on some function of their respectaabinations.”  about lateen-rigged sailing vessels.
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We reiterate that this processnst meant to reflect in- 3.4 Thea and (a, 3) models

dividual user behavior on the web; rather, it is a local pro-W i h i ith imol ial h
cedure which in aggregate works well in describing page e lllustrate these ideas with a very simple special casie tha

creation on the web. The model also implicitly capturescf'letures destination copying. We show that even in this

topic creation as follows: First, a few scattered pages be§|mple case, the induced in-degree distribution is Zipfian.

gin to appear about the topic. Then, as users interested @TOdZ is crer?ted at ﬁvkery step. NOdE.}S an_(lzlhe_dges are ne:j/er
the topic reach critical mass, they begin linking these-scat eleted, so the graph keeps on growing. This coresponds

tered pages together, and other interested users are ablelfpSettingac(?) to 1, anday(t) and(t) to 0. .

discover and link to the topic more easily. This creates a Y/e now concentrate on the edge creation process. As
“locally dense” subgraph around the topic of interest. Fur-8ach node comes into being, with probabilitye (0, 1) it
thermore, copying is a powerful mechanism for giving rise 2dds an edge to itself, and with probability- « it picks a

to bipartite cores: an author creates a resource list, and ot '2hdom edge and copies the edge onto itself, i.e., choose a

ers create pages pointing to many pages on this resourd@ndom edgéu, w) created earlier and add the edgew).
list. We now argue that the in-degree distribution of nodes in

This intuitive view summarizes the process from a pagethea model is Zipfian. o
creator's standpoint; we now recast this formulation in  Letp:: be the fraction of nodes at tintewith in-degree

terms of a random graph model. i. Assumet is sufficiently large thap; ; = p; .41. Then
at timet there aret - p; ; nodes with in-degree, and at

t + 1 there are(t + 1) - p; ++1 such nodes. Therefore the
probability that an additional node has in-degies time

We model the web as an evolving graph, in which nodes + 1 is (t + 1)p;+ — tp;+ = pis. The probability that
and edges appear and disappear with time. Our models node with in-degreé — 1 garners the single new edge
are described by four stochastic processegationpro-  is (1 — «)(i — 1)tp;_1 .+ and the probability that a node
cesseg,, andC, for node- and edge-creation, addletion  with in-degree gains the new edge and therefore becomes
processed, andD. for node- and edge-deletion. These in-degree + 1is (1 — «)(it)p; . It must be the case that:
processes are discrete-time processes. Each process is a

3.3 Aclass of graph models

function of the time step, and of the current graph. I-—a)i—Dtpic1e— (1 —a)@t)pir = pig
Consider, for instance, the following node creation and (1= )i(pi—1s — pis) = Dpis

deletion process: at time step independent of all ear- ’ d ’ ’

. . . .ap; ¢

lier events, create a node with probability(t). We could (1—a)i o = Pt

have a similar model with parametey;(¢) for node dele- d ! di

tion. Deleting a node also deletes all its incident edges. (1—a) Pit _i

Clearly, we would tailor these probabilities to reflect the Digt ?

growth rates of the web and the half-life of pages respec- l1-a)lnp;y = —Ini

tively. 1

pig = 1/iT==).

We present edge processes ranging from simple to com-
plex to model the web with increasing fidelity. At this A | B In thi h
stage, we state a complex model we believe to be Iargel)éd s an example, set = 1/2. In this process, each new

realistic. In Section 3.4, we show that even a greatly sim- ge flips a fal_r coin, and on head_s points to the_ newest
page, but on tails points to the destination of a uniformly-

hosen random in-link. This process will then have an in-
egree distribution given by/i?, following our observa-
tions of the web.

Now, consider an extension to themodel yielding the
(e, 3) model. Each time a new page arrives, a single edge
is added as follows. The process flips two independent
coins with probabilitiesx and 5 of coming up heads. The

plified process induces a Zipf distribution on in-degrees.
At each step we choose (possibly by random samplingg
a nodev to add edges out of, and a number of edgéisat
will be added ta. With probabilitys we addk edges from
v to nodes chosen independently and uniformly at random
With probabilityl — 3, we choose another vertex at ran-
dom, andcopyk edges fromu to v. That is, after choos-
ing a nodeu at random, creaté (directed) edgesgv, w) ) ) i
such thatu, w) is a random edge incidentat One might "€V Ed%du’ v) is built as follows: o
reasonably expect that much of the timewill not have The “destination™ is set based on the coin: if it
out-degree larger thak; if the out-degree of, exceedsy ~ COMes up heads; is the newest page, a}‘nd othe,er|$e,
we pick a random subset of size If on the other hand the 1S the destination of a random link. The “sourcels set
out-degree of: is less thark we first copy the edges out of Pased on thg coin: if it comes up heads, is the newest
u, then pick another random nodéto copy from, and so  Page, and otherwise,is the source of a random link.
on until we have enough edges. Such a copying process is_Since the originakv model chooses edge destinations
not unnatural, and consistent with the qualitative intriti Without reference to edge sources, the in-degree distribu-

at the beginning of this section. tion ?f the («, ) model will also be given by, =
As a simple example of an edge deletion process, attimeé/iT-=7. And since the same analysis applies if we flip
t, delete a random edge with probabildt). the definition of “source” and “destination,” the out-degre
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distributiong is given byg; , = 1/iT= for large enough 4  Algorithms

t. We identify three steps in the construction of a knowledge

base of communities on the web: (i) efficiently enumer-
ating the subgraphs (i.e., cores) of interest; (ii) collagt

1. Pr[Anode has in-degreg — i—2-1. additional web pages related to each enumerated core to
build a community; and (iii) extracting statistically sién
icant information from each such community, leading to a

For example, setting = .52 andg3 = .58, the model
generates a graph with the following properties:

2. Pr[A node has out-degreg — i—2-38,

Both of these values match the web. searchable index of these communities. Accordingly in this
_ _ o section we describe three algorithms that we view as cen-
3.5 Resource list copying for bipartite cores tral to each of these steps: (i) tiimination/generation

The («, 3) model of Section 3.4 induces Zipfian in- and paradigm for efficient subgraph enumeration on web-scale
out-degrees, but edges are added one at a time. In the g __aphs, using a relatlvel_ylean 1c0mputat|ona_1l infrastrcet
eral framework of Section 3.3, a model with more topic {Il) @n extension of Kleinberg's HITS algorithm [19] that
focus would copy several links from the same resource listcn t@ke as input only a set of URL's present in a core (and

In this section, we explore the impact of copying multiple "© duery terms), to produce authoritative web pages on the
links onC. . formation community centered around this core; and (iii) a method for
,J :

Recall that a; ; is a bipartite core whose sétcontains extracting statistically significant index terms with whic
i nodes. and whose sBtcontainsj nodes. We will referto 10 index such communities. Note that the first and the third

the elements of, asfans and the elements @t ascenters steps are generic to building indexable knowledge bases of

In [20] it is shown that the web contains over 133,@00; comr_n_unit_ies from subgraph enumeration. The second is
cores. We consider first a traditional random graph modelSPecified in terms of bipartite cores for concreteness, al-
showing that such a model will not predict this large num_though the reader may readily see its extension to other
ber of C3 3’s. Next, we show that our model will in fact subgraphs.

predict such a large number.

Example 2 Letn = 100,000,000 = 108, and consider . ) o ) )
a traditional random graph model where every link is in- An algorithm in the elimination/generation paradigm per-

dependently present with probabilitp—7 (so that the av- forms a number of sequential passes over the web graph.

erage out-degree is 10, somewhat higher than reality). Al'he graph is stored as a binary relation on disk, and thus is
6-tuple of nodes. = {a,b,c} and R = {z,y,z} forms not available for random access. During each pass, the al-

a O3 5 if all nine edges front. to R are present, an event gorithm writes a modified version of the dataset to disk for
occu’rring with probability(10~7)? = 1063, T'here are thenextpass. It also collects some metadata in main mem-

approximately=® /720 = 10%7/72 ways of choosing such ©°TY which serves as state during the next pass. Passes over

6-tuples. Thus the expected numbeiChfs’s is approxi- the data are interleaved with sort operations, which change
mately ’ the order in which the data is scanned, and constitute the

10793 x 1047/72 < 10717 < 1 bulk of the processing cost. During each pass over the data,

Turning thi lculati q h eliminationandgeneratioroperations are interleaved. The
urning this calculation around, we can compute hoW yatails are given below:

large an out-degree an average page must have in the tra-

4.1 Enumerating cores

ditional random graph model, in order for 133,008 3's Elimination. There are often easy necessary (though
to arise in the web: roughly 1200, a number that is againnot sufficient) conditions that have to be satisfied in order
inconsistent with the web. for a node to participate in a subgraph of interest to us.

Consider for instance the problem of enumerating cliques
of size four. We can prune any node whose in-degree or
out-degree—at any stage of the processs less than 4 (the

conving of a random subset of links from a resource Iist%ignificance of this will become apparent below). Consider
pying ‘next the example of’y 4's. Any node with in-degre8 or

We omit the details, but the key idea is the following: theSmaller cannot participate on the right side @ a,. Thus
probability thata andb both copy the sama links from a edges which are directed into such nodes and the nodes

single resource listis 2(1/n?) even though the out-degree oo
X . themselves can be pruned from the graph. Likewise, nodes
of a node is a small constant independent ofWhen they : L
with out-degree3 or smaller cannot participate on the left

both copy the sam@ links fro”? th_e_same source,_(ég,g side of aCy 4. We refer to these necessary conditions as
results. There are some technicalities that stand in the wa limination filters

of this being a mathematically provable statement; chief o

these is the fact that in the early stages of copying, we mageneration.  Generation is a counterpoint to elimina-
attempt to copy from a resource list that does not have 3ion. Nodes that barely qualify for potential membership in
links to copy. However, in the “steady state” this shouldan interesting subgraph can easily be established as either
not be a significant effect; proving this rigorously remainsbelonging to such a subgraph or not. Consider again the
an interesting open direction in random graph theory. example of aCy 4. Letu be a node of in-degree exactly

A similar calculation with our model yields an expected

www.manaraa.com



4. Then,u can belong to &, 4 if and only ifthe4 nodes  significant progress. Depending on the filters, one of two
that point to it have a neighborhood intersection of size athings could happen: either we repeatedly remove nodes
least4. Itis possible to test this property relatively cheaply. from the graph until nothing is left or after several passes,
We define ageneration filterto be a procedure that identi- the benefits of elimination/generation “tail off” as fewer
fies barely-qualifying nodes, and for all such nodes, eitheand fewer nodes are deleted at each phase. If for instance
outputs a subgraph or proves that such a subgraph cannour elimination filter were “delete all nodes with fewer than
exist. 100 in-links from. compages”, we will eliminate almost

If the test embodied in the generation filter is successall pages on the web. On the other hand if the elimination
ful, we have identified an interesting subgraph. Furtherdilter were “delete all nodes with fewer than 3 out-links”,
more, regardless of the outcome, this node can be markede will reach a fixed point at which repeated elimination
for pruning since all potential interesting subgraphs con-passes do not reduce the size of the residual graph substan-
taining it have already been enumerated. tially (though this may not happen after the first such pass).

Similar schemes can be developed for other structures. Why should such algorithms run fast? We make a num-

ber of observations about their behavior:

Example 3 Consider enumerating all subgraphs in which
four web pages all point to one another. Then, any node
with fewer than three links out of it can be eliminated. Like-
wise, any node with fewer than three links into it can be 2. During each generation test, we either remove a node
eliminated. Thus, the eliminationfilter for such an enumer- u from further consideration (by developing a proof
ation finds nodes with fewer than three in-links or out-links that it can belong to no instance of the subgraph of in-
The generation filter finds nodes with exactly three in-links terest), or we output a subgraph that contain¥hus,
or out-links, and checks to see whether the resulting set  the total work in generation is linear in the size of the

of four nodes, namely the original and the three adjacent graph plus the number of subgraphs enumerated, as-

1. The in/out-degree of every node drops monotonically
during each elimination/generation phase.

nodes, is a clique. Notice that the generation filter is sub- suming that each generation test runs in constant time.
stantially cheaper in this case since there is no exhaustive  This is the case if we are enumerating a constant-sized
enumeration of subsets of sizaequired as would have subgraph; thus our algorithm éitput sensitive

been the case if the in and out degrees had each been sub- ) o

stantially larger thars. 3. As shown in Example 4 below, elimination phases

rapidly eliminate most nodes in the web graph. A
Note that if edges appear in an arbitrary order, itisnotrclea ~ complete mathematical analysis of iterated elimina-

that the elimination filter can be easily applied. If, howeve tionis beyond current techniques, but the example be-
the edges are sorted by source (resp. destination), itas cle ~ low shows that just the first elimination phase by itself
that the elimination filter can be applied to the out-links IS quite powerful.

(resp. in-links) in a single scan.

The generation filter is slightly more complicated to im- Example 4 Consider the enumeration @fs 3’'s. By the
plement efficiently. We first explain how this can be doneinverse quadratic law for in-degrees, eliminating nodes
in 3 sub-passes over the data, in the setting of Example 8n the basis of in-degree prunes away any node with in-
above. In the first sub-pass, we construct a list of nodeslegree< 2. As described in Section 2, out-degrees also
with in-degree or out-degre® along with their in- or out- have a (different) Zipfian distribution, and we can prune
neighborhoods. We assume that this list fits in main memaway any node with out-degree€ 2. Finally, apply-
ory during the second sub-pass; if not we can break the seéng a generation phase means that we also remove nodes
ond sub-pass into several phases, each processing a maitith in/out-degreeequalto 3. From simple calculations
memory-sized chunk of candidates. In the second sub-passijth the corresponding probabilities (noting for instance
we verify that each node in the neighborhood points to althat >, 1/i* = 72/6), we determine that these elimina-
other nodes in the neighborhood. At the end of the secontion/generation steps would account for nearly 90% of the
sub-pass we output all the interesting subgraphs, and in theodes in just the first iteration. Further iterations are des
third sub-pass, we delete all the candidate nodes. dramatic—both in theory and in practice.

Notice that the first and the third passes can be over-, . o
lapped with the preceding and subsequent elimination filltis thus Qlear that the_ insights from our measurements and
tering pass. Thus, the effective cost of the generatiorrfiltemOde! drive the efficiency Of_ the ellmlnanon/gen_eratlon
is just one pass over the data. Also, note that even the firsﬂara@gm_' A more m_ath_emaUcaIIy precise analysis of the
round of the elimination/generation paradigm will elimi- running time of elimination/generation in our model ap-
nate a large fraction of the destination nodes in the graplﬁ’ears to _be beyond the reach of current random graph the-
(see Example 4 for details). ory, and is a worthwhile goal.

After one elimination/generation phase, the remaining
nodes have fewer neighbors than before in the residual
graph, which may present new opportunities during theWe now describe an extension of Kleinberg’'s HITS [19],
next pass. We can continue to iterate until we do not makéo expand a cor€’; ; into its surrounding community. For

.2 From cores to communities
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brevity we only detail the novel aspects of our extension;We use the resulting set of 10 terms to index the commu-

the reader is referred to [19] for details on the basic HITSnity, and build a search utility against this index.

algorithm. To make our description succinct, we use the We are investigating more sophisticated strategies for

notationp — ¢ to denote that a web pagehas a hyperlink  the future. For instance, anchortext—the text in the vigini

to aweb page. of the “href” tags at the tails of hyperlinks—often repre-
Given a query, the basic HITS algorithm assembles aents a description of the contents of the linked-to page.

small set of page® (theroot se) using a traditional text- Thus, anchortext of good hubs around links pointing to

based search engine and then constriRétéhe expanded good authorities may be important for generation of index

se by adding all pages that points to or is pointed to pageserms and summaries. We also plan to use phrase extraction

in the root set. l.e;,R" = RU{p | »p — ¢q,q € techniques instead of simple keyword extraction.

RyU{qg | »p — ¢,p € R}. Each page is asso-

ciated with a pair of scoreB(p), a(p) which are initially g Campfire: a knowledge base of communi-
set to 1. The algorithm iteratively updates these scores as ties

h(p) = >_,_,alq) anda(p) = >_ . h(q), (after appro-
priate normalization). The top-scoring pages based(@n  In this section we describe Campfire, a knowledge base of

(resp.h(-)) are termed “authorities” (resp. “hubs”). communities. We spell out the details of our experimental
In our case, we have no text query; instead we have &etup and give some examples of the communities indexed
coreC; ;. Since there is no query, the root setis con-  in Campfire.

structed using the following rule: the root set consistg)of (
the coreC; ;, (i) all pages pointed to by the nodesiimand 5.1 Experimental setup

(iii) all pages that point to at least two nodes/in|.e., o i
The communities in the Campfire knowledge base were

R=LU{p| qg—opqel}U constructed from a 1997 crawl of the web. In addition to
extracting cores from the tape, we also extracted the state

RU{p | p— qip— q2q,q2 € R}. 0f Yahoo at the time of the crawl. As a reference point,

) ) ) ~ Yahoo contained slightly over 16,000 topics in this crawl.

We apply the basic HITS algorithm to this root set (making  The trawling algorithms were run on a PC with a 333
the assumption that the community around the core overviHz Intel Pentium Il processor. The machine had 256M of
laps significantly with the root set). The result is a set ofpain memory and a SCSI chain with multiple disk drives.
authoritative sources of information for that communit, t  The cost of running the trawling algorithm has two ma-
gether with a set of hubs that collect together and annotatRyr components: (i) the data cleaning portion, and (i) the

these authoritative pages. pruning-based mining algorithm.
o Since 2 mirrored copies of a page would generate a
4.3 Extracting index terms spuriousC3 j, we removed mirrors using the shingling

Having enumerated the cores and run the generalized HIT§1€thod of Broder et al [8]. Our algorithm shingles 3100
algorithm above to expand each core into a full communityP2ges/second. This implies that the entire set of poten-
we must extract from each community index terms to buildtia! fan pages (2 Million pages in our case) are shingled

the knowledge base, and a summary that can be used {8 about 10 minutes. Eliminating duplicates (pages which
identify the contents of the community. have the same shingle) runs at about the same speed (about

We make the following observation: the title of a page 3000 pages/second). Thus_, initial qlata C'ea”mg takes_or_ﬂy
is likely to contain terms describing the page. Using this2Pout half an hour. The major cost in the pruning step is in
heuristic, we implement the following algorithm for identi SOrting the edge data. There are 60M edges in the dataset

fying keywords that are useful for both indexing and sum-after shingling. The time to sort f[he edge set is 5 minutes
marization: per pass (on average). Our algorithms make 30 passes over

the data (foti, j = 3, 3) in the worst case. The total time to
trawl all Cs 5 cores was about 1.5 hours.
Having enumerated the cores, we then expanded them
1. Extract the titles of all web pages in a communitynto communities using the algorithm of Section 4.2. To
(which comprises the top 50 hubs and 50 authorifie®nstruct the root set, we augmented the fans and centers
as returned by the algorithm of Section 4.2) by following links on today's web. However, since the
. . — , cores date back to 1997, and the half-life of a web page
2. Eliminate stop words (e.g., articles, *html", *homeis of the order of a few weeks, many of these fans and cen-
page”, “web”, etc.) ters no longer exist. Therefore, we only expanded those
epores at least half of whose fans were still alive on today’s
web. For example, in the case ©6f ; cores, 41% passed
this test. Interestingly, the fraction of centers that di s
4. Return the top ten most frequent words alive is around 54%, suggesting that centers might have a
higher half-life than fans. Running HITS typically expands

3. Rank the resulting terms by frequency across the
tire set of pages
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a core into a community of between 100 and 4000 pages, 3. We have given illustrative examples and some gen-

with the average around 1300. The number of hyperlinks
between these pages varies from 200 to 15000, with the av-
erage around 3500. Parsing each page takes a few millisec-
onds, but running the expansion algorithm takes between 2
and 10 seconds.

The final task is to index these communities. To accom-
plish this, we run the index term extraction algorithm on
each of these communities. Given that we already have a
parsed version of these pages, running this algorithm takes
under a millisecond for each page. Using the keywords ex-
tracted, we index each community into Campfire.

5.2 Sample communities

We now provide 5 sample communities automati-
cally generated by expandingy ; cores. We present
the top five hubs and authorities of each commu-
nity along with indexing keywords, and a brief

eral principles for devising elimination/generation al-
gorithms for several interesting subgraph structures.
Are there systematic ways for developing elimina-
tion/generation algorithms for any web subgraph enu-
meration problem? How do we exploit the interplay
between the nature of the web graph and the elimi-
nation/generation phases? What are systematic tech-
niques for tuning this methodology for given resource
constraints?

4. In Campfire, we have a knowledge base built from

web communities by extending the cores we enumer-
ate from the web. We have not elicited significant se-

mantic content (beyond extracting title words and in-

dexing them for text search). Are there new paradigms
for annotating and organizing these knowledge atoms
in ways that are more valuable to users?

(manually-generated) annotation for the benefit ofReferences

the reader. A more detailed list of pages can be found at
www. al maden. i bm com cs/ k53/ canpfire. htm
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